
Numerical Simulations for Active Tectonic Processes:
Increasing Interoperability and Performance

July 17, 2003 CL 03-1701 : JPL Task Order 10650 Page 1 of 24

Fault Database for Southern California
July 17, 2003

Introduction - Team

Andrea Donnellan:
Principle Investigator,
Database design and
implementation
Jet Propulsion Laboratory
Mail Stop 183-335
4800 Oak Grove Drive
Pasadena, CA 91109-8099
donnellan@jpl.nasa.gov
818-354-4737

Dennis McLeod:
Database interoperability
University of Southern California
Mail Code 0781
3651 Trousdale Parkway
Los Angeles, CA 90089-0742
mcleod@pollux.usc.edu
213-740-7285

Lisa Grant:
Fault database architect
University of California, Irvine
Environmental Analysis and Design
Irvine, CA 92697-7070
lgrant@uci.edu
949-824-5491

Academic Training:
Anne Yun-An Chen: University of
Southern California, Ph.D.
graduate student is undertaking
development of the fault and
federated databases.

Miryha M. Gould: University of
California, Irvine, Ph.D. graduate
student is developing the
geological aspects of the fault
database.

System Architecture

z Background

This database system manages a variety of types of earthquake science data
and information. There are pre-existing collections, with heterogeneous
access interfaces; there are also some structured collections managed by
general-purpose database management systems. This new database enables
the characterization of dynamically-defined earthquake faults.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 2 of 24

In past work we have developed XML Document Type Definitions to describe
various parameters of earthquake faults and input data. We developed this
earthquake fault database based on this previous work. We continue to work
with communities that have begun to establish data standards, such as the
seismic community (effort led by Berkeley), and the International GPS Service.
There has long been a need for establishing a database of faults for seismic
hazard analysis (MG95).

Several databases have been constructed for this purpose by the U.S.
Geological Survey (USGS), California Division of Mines and Geology (CDMG)
and the Southern California Earthquake Center (SCEC), each with a different
format. The primary goal of the existing databases, and current collaborative
efforts by USGS, CDMG and SCEC on the "RELM" database, is to provide
input for probabilistic assessment of ground motion parameters. Existing
databases are not compatible and are not suitably formatted or readily
accessible for simulations. For example, much of the focus has been on
establishing whether or not certain faults exist or are "active" as defined by the
state of California, and how their proposed geometries would affect ground
motion estimates.

Most faults in the existing databases have been divided into characteristic
segments that are proposed to rupture as a unit. Geologic slip rates are
assigned to large segments rather than to the specific locations (i.e.
geographic coordinates) where they were measured. These simplifications
and assumptions are desirable for seismic hazard analysis, but they introduce
a level of geologic interpretation and subjective bias that is inappropriate for
simulations of fault behavior. This database includes primary geologic and
paleoseismic fault parameters (fault location/geometry, slip rate at measured
location, measurements of coseismic displacement, dates and locations of
previous ruptures,) as well as separate interpreted/subjective fault parameters
[GL99] such as characteristic segments, average recurrence interval,
magnitude of characteristic ruptures etc. Both parameter types will be updated
as more data is acquired and interpreted through research and the numerical
simulations.

To support this earthquake fault database and others, we acquired and
employed a state-of-the-art commercially-available general-purpose database
management system (MySQL). In particular, we utilized a basic relational

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 3 of 24

database management system running on a PC under LINUX. These systems
support the definition, storage, access, and control of collections of structured
data. To meet the needs of the simulation community, we aim to support the
following features:

• extensible type definition capabilities in the database management
system (to accommodate application-specific kinds of data) – already
developed in a prototype form,

• the ability to combine information from multiple databases – in the
design, not yet developed, and

• mechanisms to efficiently return XML results from requests –
near-term future work.

z Design Requirements

Our system allows the user to operate on the data through an Internet
connection currently at http://infogroup.usc.edu:8080/index.html . Prospective
users should contact one of the authors above for user name and password.
The user interface is browser-based. Java Script has to be supported at the
user’s side. The requirements of our system are the following:

1. Hardware Requirements (HR):

HR1: The user shall have a computer that has network access
HR2: The server shall have internet connection
HR3: The server shall allow Hypertext Transfer Protocol (HTTP)

2. Software Requirement (SR)
SR1: The user shall have web browsers
SR2: The PC on the user’s side shall support Java Script program
SR3: The server shall have an operating system that supports

multi-tasking
SR4: The server shall have one database management system for

keeping data
SR5: The server shall deal with the web base request from users

3. Security Requirement (ER)
ER1: The system shall only allow Hypertext Transfer Protocol (HTTP) for

the end user

4. Scalability Requirements (AR)
AR1: The system administrator may preprogram the system anytime.

5. System Feedback Requirements (FR)
FR1: The system shall pop-up an error message dialog box after invalid

data input
FR2: The system shall provide enough information about request

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 4 of 24

processing status.

6. Performance Requirement (PR)
PR1: The system shall provide a response time within 10 seconds.

7. Operational Requirements (OR)
OR1: The system shall provide a method of inserting data
OR2: The system shall provide a method of deleting data
OR3: The system shall provide a method of reviewing data
OR4: The system shall provide the contact information for the end user
OR5: The system shall provide a log of all events generated during

operation.

JSP
Programs

DBMS

User
Interface

User

Request
JDBC

Connection

Database

QueryResult

Output

Server (URL: http://infogroup.usc.edu:8080)

Fig 1. System Architecture

z Operating System

The operating system installed in our server is Linux, Red Hat 8.0.

z Web Server

We installed Apache and Jakarta Tomcat V. 4.1 on our server in order to
support web pages and JavaServer Pages (JSP).

z Database Management System

We use MySQL as our backend database management system. MySQL
is easy to get and operate.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 5 of 24

Implementation

z User Interface

We use hypertext markup language (HTML) and JavaScript to program our
user interfaces. HTML is used on the World Wide Web and has provided a
good base for web pages for a long time. We employ JavaScript to check
input errors and show reminders to the end users. Our user interfaces are in
the formats of forms to provide simple but sufficient functions.

When the user clicks on submit (here means “insert”, “select”, or “delete”), the
backend corresponding JSP programs will be called to further process the
request.

Functionality

z Insert Data

Insert data function is handled by two programs: Insert.jsp and insert.jsp.

Insert.jsp:
Has four purposes: getting parameters, examining the validation of data,
showing confirmation message, and passing parameters to insert.jsp.
The validation of data falls into two categories: existence and format.
Existence means that certain parameters must be assigned some values.
In Fig 2, we show one example of our error message regarding this.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 6 of 24

Fig 2. Error message for requiring value for parameter Author1

Some parameters have to be entered in specified formats. For example,
parameter Year has to be a four-digit and an integer number. In Fig 3, we
display another example of our error message.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 7 of 24

Fig 3. Error message for incorrect format

A confirmation message will pop-up before the parameters passed to
insert.jsp. Values of four parameters, Fault ID, Fault Name, Segment ID,
and Segment Name, will be showed in the pop-up window and the
system will ask our user to confirm the inputs. In Fig 4, we show the
confirmation message.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 8 of 24

Fig 4. Confirmation message

insert.jsp
insert.jsp will get the parameters from Insert.jsp, form SQL queries, call
JDBC connection to our DBMS, and execute queries. After successfully
executing queries, a message will be shown in the browser to inform the
user the completion of insertion.

z Select Data

Select data function is handled by two programs: Select.jsp and select.jsp.

Select.jsp:
Select.jsp performs three actions: getting parameters, examining the
validation of data, and passing parameters to select.jsp. These actions are
the same as those of Insert.jsp.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 9 of 24

select.jsp
select.jsp will get the parameters from Select.jsp, form SQL queries, call
JDBC connection to our DBMS, execute queries, and print out the query
results in the browser. If no parameter is specified, all data in Fault
Database would be shown.

z Delete Data

Delete data function is handled by two programs: Delete.jsp and
delete.jsp.

Delete.jsp:
This program will get parameters, examine the validation of data, and pass
parameters to delete.jsp. These actions are the same as those of
Insert.jsp.

delete.jsp
It will get the parameters from Delete.jsp, form SQL queries, call JDBC
connection to our DBMS, execute queries, and print out the query results
in the browser. We don’t allow cascade deletion. Therefore, an error
message will be shown if the user doesn’t specify any parameter. In Fig 5,
we display the error message regarding to this.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 10 of 24

Fig 5. Error message regarding to forbidden cascade deletion

z Insert Layer Data

Insert layer data function is handled by two programs: Insert_Layer.jsp and
insert_Layer.jsp.

Insert_Layer.jsp:
Like Insert.jsp, this page is used for four purposes: getting parameters,
examining the validation of data, showing confirmation message, and
passing parameters to insert_Layer.jsp.

insert_Layer.jsp:
insert_Layer.jsp will get the parameters from Insert_Layer.jsp, form SQL
queries, call JDBC connection to our DBMS, and execute queries. After
successfully executing queries, a message will be shown in the browser to
inform the user the completion of insertion.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 11 of 24

z Select Layer Data

Select layer data function is handled by two programs: Select_Layer.jsp
and select_Layer.jsp.

Select_Layer.jsp:
Select_Layer.jsp performs three actions: getting parameters, examining
the validation of data, and passing parameters to select_Layer.jsp. These
actions are the same as those of insert_Layer.jsp.

select_Layer.jsp
select_Layer.jsp will get the parameters from Select_Layer.jsp, form SQL
queries, call JDBC connection to our DBMS, execute queries, and print out
the query results in the browser. If no parameter is specified, all data in
Fault Database for Layer would be shown.

Data in Fault Database

z Source

Data in the fault database are extracted from refereed journal articles,
professional papers, professional reports, and conference abstracts.

z Parameters

The following parameters are the particular properties that describe the
data in Fault Database:

Parameter Full Name Definition

Fault_id Fault ID number

Fault ID numbers are extracted from the
Southern California Earthquake Center
(SCEC) Phase II report (Working Group
on California Earthquake Probabilities,
1995)

FaultName Fault name

Fault names are taken from study site
descriptions provided in each individual
data source. Faults are fractures dividing
two bodies of rock, along which the rock
masses have moved against each other.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 12 of 24

Parameter Full Name Definition

StrandName Strand name

Strand names are taken from study site
descriptions provided in each individual
data source. Fault strands are fault
branches or splays of a larger fault zone.

InterpId Interpretation ID
number

The interpretation ID numbers are
automatically generated for each
individual data source entered into the
fault database

Author Author names The authors of each publication are listed
in authorship order.

Publication Publication title
The name of the journal article,
professional paper, professional report, or
conference abstract.

Year Year The year of publication of the source.

Title Title

The name of the journal, professional
paper, professional report, or conference
proceedings which features the
publication.

Volume Volume

The volume number of the journal,
professional paper, professional report, or
conference proceedings which features
the publication.

Number Number

The number or issue of the journal,
professional paper, professional report, or
conference proceedings which features
the publication.

Pages Pages The page numbers of the publication.

Comment Comment The comment field allows for additional
explanation regarding the data source.

SegmentId Segment ID
number

Segment ID numbers are assigned for
each fault segment using a rubrick
designed by Miryha M. Gould, based on
segments recognized by Petersen et al.,
1996.

SegmentName Segment name

Segment names are taken from study site
descriptions provided in each individual
data source. Only segments recognized
by Petersen et al., 1996 are considered at
this point.

Strike Strike
The geographic orientation of a fault
plane. Specifically, strike is the direction
of a horizontal line in the plane of a fault.

Dip Dip The slope or vertical component of a fault
plane.

Depth Depth The distance from the surface of the earth
to the base of a fault or fault zone.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 13 of 24

Parameter Full Name Definition

Width Width The surface or subsurface extent of a fault
zone.

LatStart Latitude start The latitude of the location of one end of a
fault. LatStart corresponds with LonStart.

LatEnd Latitude end The latitude of the location of one end of a
fault. LatEnd corresponds with LonEnd.

LonStart Longitude start
The longitude of the location of one end of
a fault. LonStart corresponds with
LatStart.

LonEnd Longitude end
The longitude of the location of one end of
a fault. LonEnd corresponds with
LatEnd.

Datum Datum

The name of the geographic datum
corresponding to the latitude and longitude
points describing the location of the fault at
the surface of the Earth. Geographic
datums define the size and shape of the
earth and the orientation of the coordinate
systems used to map the Earth.

LastBreak Last break

The year of the last earthquake rupture
along a section or at a specific location on
a fault. Quantities are expressed in
calendar years.

Friction n/a This is a future implementation.

ObsType Observation
type

The method of observation used by the
source authors for data collection. For
example, paleoseismology or
geomorphology.

AveRecurr
Average

recurrence
interval

The mean time between earthquakes of a
given magnitude or magnitude range on a
fault. Quantities are expressed in years.

MinRecurr
Minimum

recurrence
interval

The minimum time between earthquakes
of a given magnitude or magnitude range
on a fault. Quantities are expressed in
years.

MaxRecurr
Maximum
recurrence

interval

The maximum time between earthquakes
of a given magnitude or magnitude range
on a fault. Quantities are expressed in
years.

AveSlip Average slip per
event

The mean amount of displacement on a
fault averaged over the number of
earthquake events observed. Quantities
are expressed in meters.

MinSlip Minimum slip
per event

The minimum amount of displacement on
a fault averaged over the number of
earthquake events observed. Quantities
are expressed in meters.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 14 of 24

Parameter Full Name Definition

MaxSlip Maximum slip
per event

The maximum amount of displacement on
a fault averaged over the number of
earthquake events observed. Quantities
are expressed in meters.

AveDipSlip Average dip slip
per event

The mean amount of displacement
perpendicular to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

MinDipSlip Minimum dip
slip per event

The minimum amount of displacement
perpendicular to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

MaxDipSlip Maximum dip
slip per event

The maximum amount of displacement
perpendicular to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

AveStrikeSlip Average strike
slip per event

The mean amount of horizontal
displacement parallel to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

MinStrikeSlip Minimum strike
slip per event

The minimum amount of horizontal
displacement parallel to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

MaxStrikeSlip Maximum strike
slip per event

The maximum amount of horizontal
displacement parallel to the strike of a fault
averaged over the number of earthquake
events observed. Quantities are
expressed in meters.

AveDipRate Average dip slip
rate

The mean rate of displacement
perpendicular to the strike of a fault
averaged over a time period representing
one to several large earthquakes.
Quantities are expressed in millimeters per
year.

MinDipRate Minimum dip
slip rate

The minimum rate of displacement
perpendicular to the strike of a fault
averaged over a time period representing
one to several large earthquakes.
Quantities are expressed in millimeters per
year.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 15 of 24

Parameter Full Name Definition

MaxDipRate Maximum dip
slip rate

The maximum rate of displacement
perpendicular to the strike of a fault
averaged over a time period representing
one to several large earthquakes.
Quantities are expressed in millimeters per
year.

AveStrikeRate Average strike
slip rate

The mean rate of horizontal displacement
parallel to the strike of a fault averaged
over a time period representing one to
several large earthquakes. Quantities
are expressed in millimeters per year.

MinStrikeRate Minimum strike
slip rate

The minimum rate of horizontal
displacement parallel to the strike of a fault
averaged over a time period representing
one to several large earthquakes.
Quantities are expressed in millimeters per
year.

MaxStrikeRate Maximum strike
slip rate

The maximum rate of horizontal
displacement parallel to the strike of a fault
averaged over a time period representing
one to several large earthquakes.
Quantities are expressed in millimeters per
year.

The other group, Material Rectilinear Layer, has the following parameters:

- Initialization:

LayerName
LayerID

- Geographic and geometric description:
LatOrigin (analogous to LatEnd, LonEnd for a SEGMENT)
LonOrigin
Datum
OriginX
OriginY
OriginZ (These three are in km, location of the block SW corner from the

coordinate axis origin).
Length
Width
Depth

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 16 of 24

- Material constants (numbers) with their units (strings):

LameLambda
LameLambdaUnits
LameMu
LameMuUnits
Viscosity
ViscosityUnits
ViscosityExponent

Performance Evaluation

z Requirement Verification and Evaluation

Legend:

NC – No Change from initial specification
Mo – Modified from initial specification, see justification for description
Add – The new requirement which was added after initial specification
NI – Not Implemented in prototype, see justification for description
I – Implemented in prototype

Hardware Requirements (HR)
Req. # Status Justification
HR1 NC, I This is implemented.

HR2 NC, I This is implemented. The domain name of the server is
infogroup.usc.edu.

HR3 NC, I This is implemented. The port for HTTP has been
opened since finishing Apache server installation.

Software Requirement (SR)

Req. # Status Justification
SR1 NC, I This is implemented.

SR2 NC, NI Due to the variety of users, a message shall be shown
to inform the user about the JavaScript support.

SR3 NC, I This is implemented. Linux, Red Hat 8.0 has been
installed on our server.

SR4 NC, I This is implemented. MySQL, the DBMS, has been
installed on our server.

SR5 NC, I
This is implemented. Jakarta Tomcat V. 4.1 has been
installed and started up on our server in order to
support web pages and JavaServer Pages (JSP)

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 17 of 24

Security Requirement (ER)

Req. # Status Justification

ER1 NC, I This is implemented. We’ve closed all the ports except
HTTP and SSH for administrative purpose.

Scalability Requirements (AR)

Req. # Status Justification

AR1 Mo, I
The requirement has been modified so that not only
system administrator but also the affiliate for this
project.

System Feedback Requirements (FR)

Req. # Status Justification

FR1 NC, I
This is implemented. JavaScript codes has been added
to the web pages to check the validation of the input
data.

FR2 NC, I This is implemented. The query results would be shown
to the user.

Performance Requirement (PR)

Req. # Status Justification

PR1 NC, I This is implemented. We programmed simple web
pages to display the results in a short time.

Operational Requirements (OR)

Req. # Status Justification

OR1 NC, I
This is implemented. We’ve coded for two programs,
Insert.jsp and insert.jsp, to handle the functionalities of
data insertions.

OR2 NC, I
This is implemented. We’ve coded for two programs,
Select.jsp and select.jsp, to handle the functionalities of
data selections.

OR3 NC, I
This is implemented. We’ve coded for two programs,
Delete.jsp and delete.jsp, to handle the functionalities of
data deletions.

OR4 NC, I This is implemented. The user is able to click the link
and generate mails to the system administrator.

OR5 NC, I This is implemented. Jakarta Tomcat records every
event in the log file.

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 18 of 24

z Web Pages for Successful Functionalities

- Insert Data

Fig 6. Insert.jsp

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 19 of 24

- Select Data

Fig 7. Query result for selecting data

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 20 of 24

- Delete Data

Fig 8. Showing the queries for deleting data

Future Work

The fault database has been designed to accommodate several types of fault
data and data sets, including primary data, non-primary summary data, and
simulated or hypothetical data. The fault database is currently populated with
a small number of examples drawn from primary sources such as journal
articles and conference abstracts. The examples focus on paleoseismic data
from major faults in California. The current examples do not contain much
information on geometric fault attributes, or geographic coordinates of fault
segments because these are not typically published in research papers.

Future work will focus on populating the fault database with primary
paleoseismic data, and with structured data sets containing summary fault
attributes and geographic coordinates of fault segments. We will enter more
paleoseismic data from research publications, and add two larger structured
data sets: Virtual California, and the fault database published by the California

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 21 of 24

Geological Survey (CGS) for seismic hazard analysis. The CGS data set
provides geographic coordinates, geometry, and summary attributes for many
active faults and fault segments in California. We also intend to improve the
effectiveness of database queries by enabling wildcard searches.

Appendix – Database Schema

In the following, we discuss the database schema with SQL statements.
These statements have actually been used to create tables in the database.

SQL statements defining the schema for Fault Database:

create table FAULT
(Fault_id int not null,
FaultName char(255) not null,
StrandName char(255),
primary key(Fault_id, FaultName));

create table REFERENCE

(InterpId INT NOT NULL auto_increment,
Author1 char(255),
Author2 char(255),
Author3 char(255),
Author4 char(255),
Author5 char(255),
Publication char(255),
Year int,
Title char(255),
Volume char(255),
Number char(255),
Pages char(255),
Comment char(255),
primary key(InterpId));

create table SEGMENT

(Fault_id int not null,
FaultName char(255) not null,
InterpId INT NOT NULL,

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 22 of 24

SegmentId int,
SegmentName char(255),
Strike float,
Dip float,
Depth float,
Width float,
LatStart float,
LatEnd float,
LonStart float,
LonEnd float,
LastBreak1 float,
LastBreak2 float,
LastBreak3 float,
Friction float,
ObsType int,
AveRecurr1 float,
AveRecurr2 float,
AveRecurr3 float,
MinRecurr1 float,
MinRecurr2 float,
MinRecurr3 float,
MaxRecurr1 float,
MaxRecurr2 float,
MaxRecurr3 float,
AveSlip1 float,
AveSlip2 float,
AveSlip3 float,
MinSlip1 float,
MinSlip2 float,
MinSlip3 float,
MaxSlip1 float,
MaxSlip2 float,
MaxSlip3 float,
AveDipSlip1 float,
AveDipSlip2 float,
AveDipSlip3 float,
MinDipSlip1 float,
MinDipSlip2 float,

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 23 of 24

MinDipSlip3 float,
MaxDipSlip1 float,
MaxDipSlip2 float,
MaxDipSlip3 float,
AveStrikeSlip1 float,
AveStrikeSlip2 float,
AveStrikeSlip3 float,
MinStrikeSlip1 float,
MinStrikeSlip2 float,
MinStrikeSlip3 float,
MaxStrikeSlip1 float,
MaxStrikeSlip2 float,
MaxStrikeSlip3 float,
AveDipRate1 float,
AveDipRate2 float,
AveDipRate3 float,
MinDipRate1 float,
MinDipRate2 float,
MinDipRate3 float,
MaxDipRate1 float,
MaxDipRate2 float,
MaxDipRate3 float,
AveStrikeRate1 float,
AveStrikeRate2 float,
AveStrikeRate3 float,
MinStrikeRate1 float,
MinStrikeRate2 float,
MinStrikeRate3 float,
MaxStrikeRate1 float,
MaxStrikeRate2 float,
MaxStrikeRate3 float,
Foreign key (Fault_id) references FAULT(Fault_id),
Foreign key (FaultName) references FAULT(FaultName),
Foreign key (InterpId) references REFERENCE(Interpid));

Fault Database: Milestone I

July 17, 2003 JPL Task Order 10650 Page 24 of 24

create table LREFERENCE

(InterpId INT NOT NULL auto_increment,
Author1 char(255),
Author2 char(255),
Author3 char(255),
Author4 char(255),
Author5 char(255),
Publication char(255),
Year int,
Title char(255),
Volume char(255),
Number char(255),
Pages char(255),
Comment char(255),
primary key(InterpId));

create table LAYER

(InterpId INT NOT NULL,
LayerId int not null,
LayerName char(255),
LatOrigin float,
LonOrigin float,
Datum char(255),
OriginX float,
OriginY float,
OriginZ float,
Length float,
Width float,
Depth float,
LameLambda float,
LameLambdaUnits char(255),
LameMu float,
LameMuUnits char(255),
Viscosity float,
ViscosityUnits char(255),
ViscosityExponent float,
primary key(InterpId));

